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Abstract—This paper presents the deep active learning frame-
work using Bayesian CNNs for image data as presented by
Gal et al. By integrating Monte Carlo dropout for approximate
Bayesian inference, the approach quantifies the model’s epistemic
uncertainty which is essential for active learning. Acquisition
functions like BALD, Max Entropy, and Variation Ratios are
evaluated in the Bayesian active learning setting, exploring
their superiority over deterministic baseline methods. However,
the Bayesian approach falls short of modern ensemble-based
approaches’ performance on both benchmark and real-world
datasets.
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deep learning, convolutional neural networks, active learning,
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I. INTRODUCTION

Deep learning and active learning are important subfields of
machine learning. Deep learning utilizes artificial deep neural
networks to automatically extract features from data, enabling
complex learning capabilities through many simpler structures
[1], [2]. The advent of large-scale annotated datasets and
advancements in computational power have significantly ac-
celerated deep learning research, giving it a performance edge
over traditional machine learning algorithms in applications
like high-dimensional classification and generative tasks [3].
However, deep learning’s flexibility necessitates substantial
amounts of labeled data for effective training. Data labeling in
turn is inherently costly, labor-intensive, and time-consuming.

Active learning, also known as query learning, aims for
efficient model updates by evaluating the value of different
samples within a dataset. It starts with a small labeled training
set and uses an acquisition function to determine which data
points from the unlabeled pool should be labeled by an ‘oracle’
(typically a human expert) and added to the training set.
The model is retrained on the updated training set, and this
process is repeated until the desired model performance is
achieved. Active learning minimizes the number of samples
to be labeled, thus reducing costs while maximizing perfor-
mance gains [4]. This is particularly beneficial in domains
where labeling data is expensive and time-consuming, such as
medical imaging or remote sensing.

Combining the strengths of deep learning and active learn-
ing, deep active learning has emerged, offering both extensive
feature extraction capabilities and efficient sampling. Despite
their potential, deep active learning algorithms have strug-
gled with high-dimensional data, limiting their use to lower-

dimensional problems and algorithms for a long time [4], [5].
Consequently, effective integration of deep neural networks
into the active learning paradigm remains an active research
field, especially for higher dimensional problems such as
learning from images or natural language processing (NLP).

The challenges of using deep learning in active learning set-
tings arise from two main issues: 1) Deep learning algorithms
require large amounts of training data, whereas active learning
demands we begin with a small training set; 2) Active learning
acquisition functions need to quantify a model’s uncertainty
over unseen data (epistemic uncertainty). However, classic
deterministic neural networks typically provide point estimates
of uncertainty, which predominantly contain aleatoric uncer-
tainty, i.e. the inherent noise in the prediction, rather than
the epistemic uncertainty needed for effective active learning.
Classic neural networks’ uncertainty measures (e.g. softmax
layer) are therefore less suited for active learning settings.

The lack of epistemic uncertainty quantification in tra-
ditional neural networks is inherent and arises from their
training process. Neural networks are typically trained using
backpropagation to calculate the gradients of a loss function
(e.g., mean squared error for regression or cross-entropy for
classification), followed by gradient descent to update the
network’s parameters [1]. This process aims to find a single
set of parameters that minimizes the loss function, resulting
in point estimates of epistemic uncertainty rather than the
more informative probability distributions over possible pa-
rameters. Consequently, a trained neural network’s parameters
are fixed values that represent the best estimate given the
training data [3]. Classic neural networks’ deterministic nature
strictly implies that the same input will always yield the same
output, with no variation to indicate epistemic uncertainty
in the prediction. Estimating epistemic uncertainty in neural
networks would require capturing the variability or confidence
in their predictions.

This paper presents a deep active learning approach by Gal
et al. [6], which integrates Convolutional Neural Networks
(CNNs), Bayesian probability theory, and active learning into
a robust framework for high-dimensional data. By leveraging
Bayesian CNNs and Monte Carlo (MC) dropout, this method
effectively captures epistemic model uncertainty, selecting the
most informative data points and improving model perfor-
mance with fewer labeled samples. Specifically, the aim is
to address the following research questions in the Bayesian



active learning setting for image classification: 1) Which ac-
quisition functions are most effective in selecting informative
samples? 2) How does the performance of Bayesian CNNs
compare to traditional deterministic CNNs and existing active
or semi-supervised learning techniques in providing reliable
uncertainty estimates? 3) What are the practical implications
of using deep Bayesian active learning and its rival approaches
in real-world applications?

The rest of this paper is structured as follows: Section II re-
views related work in active learning and Bayesian deep learn-
ing, highlighting challenges and previous attempts to integrate
these approaches. Section III details the methodology, includ-
ing the architecture of Bayesian CNNs, the implementation of
MC dropout, and the design of acquisition functions for deep
active learning. Section IV presents the experimental setup and
results, comparing the proposed method against traditional and
state-of-the-art ensemble techniques on benchmark datasets.
The practical implications, including applications to real-world
problems like medical image analysis, are also discussed.
Finally, Section VI concludes the paper and outlines potential
directions for future research, focusing on improving compu-
tational efficiency and extending the framework to other types
of high-dimensional data.

II. RELATED WORK

At the time of Gal et al.’s paper’s publication in 2017,
research on tackling high-dimensional machine learning prob-
lems through active learning approaches was scarce. This
section will first review the work available to the authors at
the time before looking at more recently emerged paradigms
and methods.

A. Review of Related Work at the Time of Publication

First attempts at expanding active learning to high-
dimensional data were continuations of lower dimensional
approaches: For instance, Joshi et al. [7] used probabilistic out-
puts derived from a Support Vector Machine (SVM) [8] with
linear, polynomial, and Radial Basis Function (RBF) kernels
on images to handle non-linearities. They employed entropy
and Best-versus-Second Best (BvSB) as the primary measures
of uncertainty to select the most informative examples for
labeling. While their approach demonstrated effectiveness in
reducing labeled data requirements, it faced challenges in
scaling to the complexities of high-dimensional data typically
found in modern applications.

Later attempts at scaling active learning utilized Gaussian
Processes (GPs), a non-parametric approach to modeling data
distributions, again with RBF kernels to obtain model un-
certainty on top of predictions [9]. An important limitation
of this approach, however, was only using (low-dimensional)
scale-invariant feature transform (SIFT) features of the images
as input. Finally, Zhu et al. [10] used a Gaussian random
field model, i.e. a probabilistic model for spatial data that
considers the spatial relationships between data points. The
model is then used to predict the labels of unlabeled data
points based on the labeled data and with respect to the spatial

configuration of all data points. Importantly, they did not limit
their inputs to SIFT features but fed entire raw images to
an RBF kernel. Nevertheless, because they incorporated both
labeled and unlabeled data in their model training process,
this approach does not constitute an active, but rather a semi-
supervised learning approach.

Semi-supervised learning on image data had garnered sig-
nificantly more attention than active learning when Gal et al.
published their work [6]. In semi-supervised learning, a model
is provided with a fixed set of labeled data and a fixed set of
unlabeled data. The model can use the unlabeled data to learn
about the distribution of the inputs, hoping that this informa-
tion will aid in learning from the small labeled set as well [4].
Although the learning paradigm is quite different from active
learning, this research formed the closest modern literature to
active learning of image data at the time. Kingma et al. [11]
advanced the field by leveraging deep generative models for
semi-supervised learning. They developed a framework that
uses variational inference and deep neural networks to model
data density, allowing effective generalization from small
labeled datasets to large unlabeled ones. Similarly, Weston
et al. [12] proposed a method to enhance the generalization
ability of neural networks by utilizing nonlinear embedding
algorithms. They applied these embeddings as regularizers at
the output layer or across multiple layers of deep architectures,
which improved both performance and training efficiency. Ad-
ditionally, Rasmus et al. [13] introduced the Ladder network,
combining supervised and unsupervised learning by denoising
representations at every layer of the model. This approach
achieved state-of-the-art performance on semi-supervised tasks
by leveraging hierarchical latent variable models and local
learning at each layer.

B. Review of Contemporary Related Work

Since the publication of Gal et al.’s paper, there has been
significant progress in deep active learning for image clas-
sification beyond the literature reviewed at the time.1 Three
active learning strategies have emerged: 1) uncertainty based
sampling 2) diversity-based sampling 3) query by committee
(ensembles).

Scholars have focused extensively on enhancing
uncertainty-based methods akin to Gal et al.’s approach.
For instance, in image classification and other computer
vision models, MC dropout has been further developed and
utilized for uncertainty estimation [16]. As explained in detail
in the subsequent sections, MC Dropout involves performing
multiple stochastic forward passes through a neural network
with dropout applied at prediction time, providing a practical
approximation of epistemic model uncertainty in a Bayesian
Neural Network (BNN) [17]. This technique has been
refined to work better in the typically batch-based acquisition
process by increasing sample diversity within acquired
batches (BatchBALD) [18]. Still, single-model MC dropout

1For a complete overview, confer Ren et al.’s systematic review [4], Zhan et
al.’s comparative survey [14], or a benchmarking study specifically conducted
for active learning for image classification by Beck et al. [15].



approaches were found to suffer from the mode collapse
problem in variational inference which leads to a faulty
estimation of the posterior distribution in the BNN [19].
This could be countered by ensembling several MC dropout
models but very expensive computationally [20].

In addition, diversity-based approaches have been devel-
oped. The most relevant of these is coreset selection, which
focuses on selecting a diverse and representative set of data
points to improve the generalization capability of the model
[21]. Although its authors argue that coreset is generally
superior to the method presented throughout this paper, several
benchmarking experiments and reviews contradict or question
this claim [15], [22], [23]. While effective at capturing the
overall structure of the dataset early on, diversity-based ap-
proaches are less sensitive to data samples near the decision
boundary, which are often more critical for the prediction
model [14]. Hybrid approaches also exist: Batch Active learn-
ing by Diverse Gradient Embeddings (BADGE) [24] focuses
on calculating gradient embeddings for each unlabeled data
point by determining the gradient of the loss function with
respect to model parameters, assuming each possible class
label. It then uses the K-means++ algorithm [25] on these
gradient embeddings to ensure the selected batch is diverse
and covers a wide input space like in coreset. While found to
perform better than coreset [24], BADGE did not outperform
uncertainty-based methods in a major evaluation of deep active
learning on image classification tasks [15].

Lastly, query-by-committee (ensemble) models have also
gained traction: Unlike single-model MC dropout or classic
uncertainty-based methods, deep ensembles combine predic-
tions from multiple independent models to capture epistemic
uncertainty and increase overall model diversity. They have
been found to offer better-calibrated and more reliable un-
certainty estimates compared to both single deterministic and
Bayesian neural networks; albeit at oftentimes higher compu-
tational cost [26]. Beluch et al. [22] demonstrated ensembles’
performance specifically in the active learning for image
classification setting: Their approach not only outperformed
Bayesian methods but coreset, entropy based approaches with
pseudo-labeling [27], and methods based on the expected
model output change principle [28], too. This is attributed
to ensembles effectively counteracting class imbalances dur-
ing the acquisition process – an issue prevalent in many
domains like medical imaging. Although their performance
appears promising, ensembles have so far eschewed extensive
benchmark studies and scrutiny in the active learning image
classification domain [14], [15], [29].

III. METHOD

A. Convolutional Neural Networks in the Bayesian Setting

This section will focus on presenting the method by Gal
et al. [6], where a model was created that can both work
with high-dimensional data, i.e. images, and represent pre-
diction uncertainty on this data. The specific class of models
employed was the CNN [30]–[32]. Their design allows them
to specifically capture spatial and localized information in

images, something RBF kernels are not specifically designed
for [3]. It is due to this property that they achieved a landmark
success in 2012 on ImageNet [33] and continue to dominate
the image classification model landscape [29].

As elaborated in I. and II., traditional CNNs lack a quan-
tification of the model’s prediction uncertainty and are not
naturally suited for active learning settings. For this reason,
Gal et al. introduced the concept of a Bayesian Convolutional
Neural Network (Bayesian CNN) in 2015 [34] based on their
previous work on dropout as Bayesian approximation [17].
In Bayesian statistics, the goal is to update the probability
estimate for a hypothesis as additional evidence is provided.
For neural networks, this means updating our beliefs about
the model parameters (weights) based on the training data.
Bayesian CNNs thus follow the same architecture as regular
CNNs except that a prior probability distribution is placed over
a set of the model’s parameters (weights) ω = {W1, ...,WL} :
ω ∼ p(ω). The prior can be a default Gaussian prior
with p(ω) = N (ω|0, 1), equivalent to L2-regularization; or
alternatively another prior, such as a Laplace prior, equivalent
to L1-regularization [35]. Furthermore, we define a likelihood
model

p(y = c|x,ω) = softmax(fω(x))

for classification tasks, or a Gaussian likelihood for regression
tasks

p(y|x,ω) = N (y|fω(x), σ2)

where N (·|µ, σ2) denotes the Gaussian distribution with mean
µ and variance σ2, and fω(x) is the output of the CNN given
input x and parameters ω.

An important shortcoming of the Bayesian CNN is that
exact inference in the model involves computing the exact
posterior distribution over the model parameters ω given the
training data Dtrain. Using Bayes’ Theorem, we get

p(ω|Dtrain) =
p(Dtrain|ω)p(ω)

p(Dtrain)
(1)

(1) can also be stated as posterior ∝ likelihood × prior. The
marginal likelihood is given by the integral

p(Dtrain) =

∫
p(Dtrain|ω)p(ω) dω (2)

which is often analytically intractable to solve because the
integral may not have a closed-form solution. Meanwhile, the
high dimensionality and complexity of the integral can prohibit
numerical integration, too, due to computational cost [1].

To overcome these shortcomings in the Bayesian setting,
we have to rely on approximate inference. According to
Bishop [1], these can broadly be categorized into stochastic
(Markov Chain Monte Carlo) and deterministic approaches
(variational inference, expectation propagation). Gal et al.’s
approach bridges the two by leveraging dropout, a technique
traditionally used for regularization, as a means of performing
approximate Bayesian inference [17].



B. Monte Carlo Dropout

Dropout, traditionally used as a regularization technique,
involves randomly setting a subset of activations to zero during
each training iteration [36]. Mathematically, for a given layer
l in the network, if hl denotes the activations before dropout,
and zl is a binary mask where each element zl,i is drawn
independently from a Bernoulli distribution Bernoulli(1− pl),
the activations after applying dropout are given by:

h̃l = zl ⊙ hl

where ⊙ denotes element-wise multiplication, and pl is the
probability of an element being dropped. This operation can
be seen as sampling from a posterior distribution where each
mask configuration corresponds to a different ‘thinned’ model,
thereby approximating the effect of averaging over multiple
(non-independent) neural network architectures [3].

Initially proposed as a regularization technique, dropout has
been extended to perform variational inference in Bayesian
CNNs [17]. When employing dropout during both the train-
ing and evaluation (prediction) phases, each forward pass
through the network becomes a stochastic forward pass that
effectively samples from an approximate posterior distribution.
Formally, this process can be conceptualized as variational
inference where dropout configures the approximate distribu-
tion, q∗(ω), a tractable form within the family of distributions
that minimizes the Kullback-Leibler (KL) divergence to the
(intractable) true model posterior p(ω|Dtrain) conditioned on
the training data Dtrain [34].

Based on Gal and Ghahramani’s findings [17], [34], the
approximation of the true posterior from (1) by the dropout-
induced distribution can be represented as follows in the
classification setting with c classes:

p(y = c|x,Dtrain) =

∫
p(y = c|x,ω)p(ω|Dtrain)dω

≈
∫

p(y = c|x,ω)q∗(ω)dω

≈ 1

T

T∑
t=1

p(y = c|x,ωt) (3)

where ωt represents the weights for the t-th stochastic for-
ward pass under the dropout distribution q∗(ω). Each pass
generates a prediction, and the aggregation of these predictions
approximates the predictive distribution, capturing the model’s
epistemic uncertainty effectively. The following section will
discuss how specific acquisition functions and suitable approx-
imations thereof based on (3).

C. Acquisition Functions

In our active learning setting, let M be our model, Dpool

our pool of unlabeled data, and x ∈ Dpool our inputs. An
acquisition function a(x;M) is a function of x that our active
learning system uses to decide, what samples from Dpool to
include in the next training iteration:

x∗ = argmaxx∈Dpool
a(x;M) (4)

Unlike regression, where simple predictive variance is used
for the acquisition function, classification tasks present us with
more choices in acquisition functions for a in the maximiza-
tion problem stated in (4) and therefore ways to choose those
pool points that are most likely to improve our model.

1) Select those pool points that maximize predictive en-
tropy – denoted as H [37]:

H[y|x;Dtrain]

:= −
∑
c

p(y = c|x;Dtrain) log p(y = c|x;Dtrain)

2) Pick pool points that are expected to maximize the
information gained about the model’s parameters. This
is equivalent to maximizing the mutual information I
between predictions and model posterior, also known as
the Bayesian Active Learning by Disagreement (BALD)
[38], and can be stated as follows:

I[y ;ω|x;Dtrain]

= H[y|x;Dtrain]− Ep(ω|Dtrain)[H[y |x;Dtrain]] (5)

where again ω are our model parameters. Points that
maximize I[y ;ω|x;Dtrain] are those where the model
is uncertain on average but, at the same time, model
parameters that produce disagreeing predictions with
high certainty exist. Looking at our neural network
architecture, points that maximize the BALD acquisition
function result in a high variance on the logits layer of
the network, i.e. directly prior to going through the final
softmax layer.

3) Similar to maximum entropy, we can maximize Varia-
tion Ratios to measure model confidence in predictions
[39]:

Var-Ratio[x] = 1−max
y

p(y|x,Dtrain)

4) Alternatively, we can opt for maximizing the mean
standard deviation (STD) ad-hoc [40], [41]

σc =

√
Eq(ω) [p(y = c|x;ω)2]− Eq(ω) [p(y = c|x;ω)]

2

σx =
1

C

∑
c

σc

averaged over all c classes x can take.
5) Finally, as a baseline, we can randomly sample x from

Dpool, meaning a(x) = unif() with unif() being a
function that draws from a uniform distribution over the
interval [0; 1] which we then use to pick our datapoint.

D. Approximation of Acquisition Functions Using MC
Dropout

Actually calculating these acquisition functions requires we
specify the posterior, however, this is not an option due to
intractability. Hence, we have to approximate the posterior
distribution based on our dropout distribution q∗(ω) from (3).



Gal et al. [6] demonstrate this for BALD (5) in the following
way:

I[y ;ω|x;Dtrain]

= H[y|x;Dtrain]− Ep(ω|Dtrain)[H[y |x;Dtrain]]

Using the definition of entropy and its expectation, for c
classes that y can take, I[y ;ω|x;Dtrain] is equivalent to

−
∑
c

p(y = c|x,Dtrain) log p(y = c|x,Dtrain)

+Ep(ω|Dtrain)

[
−
∑
c

p(y = c|x, ω) log p(y = c|x, ω)

]
Now, using the identity

p(y = c|x;Dtrain) =

∫
p(y = c|x;ω)p(ω|Dtrain) dω

we can reformulate the previous equation and therefore (5) as

I[y;ω|x;Dtrain] = −
∑
c

∫
p(y = c|x;ω)p(ω|Dtrain)dω

· log
∫

p(y = c|x;ω)p(ω|Dtrain)dω

+Ep(ω|Dtrain)

[∑
c

p(y = c|x;ω) log p(y = c|x;ω)

]
(6)

Finally, we substitute the posterior p(ω|Dtrain) using our pos-
terior approximation, i.e. the Monte Carlo dropout distribution
q∗(ω) from III.B, resulting in

≈ −
∑
c

∫
p(y = c|x;ω)q∗θ(ω)dω

· log
∫

p(y = c|x;ω)q∗θ(ω)dω

+ Eq∗θ(ω)

[∑
c

p(y = c|x;ω) log p(y = c|x;ω)

]

≈ −
∑
c

(
1

T

∑
t

p̂tc

)
log

(
1

T

∑
t

p̂tc

)
+

1

T

∑
c,t

p̂tc log p̂
t
c =: Î[y;ω|x;Dtrain]

(7)

The equation defines the approximation as explained in [6],
[17]. Note that p̂tc is the probability of input x to take class c
with model parameters ω̂t ∼ q∗θ(ω):

p̂t = [p̂t1, . . . , p̂
t
C ] = softmax(f ω̂t(x))

It therefore holds that

Î[y;ω|x;Dtrain]
T→∞−−−−→ H[y|x; q∗θ]− Eq∗θ(ω) [H[y|x;ω]]

≈ I[y;ω|x;Dtrain]

Hence, as the number of samples T approaches infinity, the
estimated mutual information Î converges to the true mutual
information I given the data and input. All in all, Gal et al.’s

approach gives us a computationally tractable estimator of the
BALD acquisition function2 [6].

IV. EXPERIMENTS

Gal et al. first evaluated and compared various acquisition
functions for Bayesian CNNs using the standard MNIST
dataset [42] for image classification.3 They also applied the
same active learning process to deterministic CNNs to examine
the role of epistemic vs. aleatoric uncertainty. Their approach
was then compared to Zhu et al.’s RBF kernel-based model
[10], the only real alternative for active learning with high-
dimensional data at the time. Due to the lack of comparable
models, the authors benchmarked their Bayesian approach
against the leading semi-supervised methods available at the
time. Finally, Gal et al. demonstrated the capabilities of their
approach on the ISIC 2016 melanoma diagnosis dataset [43],
highlighting its effectiveness in a real-world setting.

A. CNN Model Setup on MNIST and Comparison of Acquisi-
tion Functions

The architecture of the CNN used follows the standard
Keras implementation for the MNIST dataset [44]. Specif-
ically, a convolution-ReLU-convolution-ReLU-max pooling-
dropout-dense-ReLU-dropout-dense-softmax structure is used,
with 32 convolution kernels, a kernel size of 4x4 with 2x2
pooling (for 2D images), a dense (fully connected) layer with
128 units, and dropout probabilities of 0.25 for the first and
0.5 for the second dropout layer. For the training process, the
CNN is initially trained on 20 random but balanced data points
and a validation set to optimize weight decay comprising 100
data points. 10,000 data points are used as the test set, and the
remaining 49,880 data points are kept in the active learning
pool at the time of initial training.

Fig. 1. Comparison of test error (accuracy) on MNIST vs. number
of acquired images from the active learning pool. Average over three
repetitions. Source: [6]

A CNN was set up for each acquisition function studied:
BALD, Variation Ratios, Max Entropy, Mean STD, and base-
line random acquisition. After the initial training, the model’s

2This can be applied to any of the aforementioned acquisition functions.
An example for approximating variation ratios is provided in the appendix.

3MNIST is a standard dataset consisting of 70,000 28x28 pixel black and
white images of ten handwritten digits.



test error was determined. Since this was a classification task,
test accuracy4 was used as the metric. Next, leveraging the
Bayesian approach by using MC dropout at prediction time
with the respective acquisition function, the 10 points that
maximized the acquisition function were selected and added to
the training set. This process – training, evaluation, acquisition
of 10 new data points – was repeated 100 times, resulting in
a total of 1,000 data points being added to the initial training
set of 20. This was repeated three times for each model, and
the results were averaged.

Of the evaluated acquisition functions, BALD, Variation
Ratios, and Max Entropy all outperformed Mean STD and
the baseline random acquisition function (see Figure 1). The
latter two performed roughly similarly. The performance of all
acquisition functions can be considered identical, particularly
as confidence intervals were not provided. All three functions
required significantly fewer images to cross the 10% and 5%
test error thresholds on MNIST compared to the baseline
random and Mean STD functions.

B. Findings on Model Uncertainty

Gal et al. further evaluate the significance of model un-
certainty in Bayesian CNNs by comparing a model with
MC dropout to a deterministic CNN using the three best-
performing acquisition functions: BALD, Variation Ratios,
and Max Entropy (see Figure 2). In deterministic CNNs,
dropout is used during training for regularization and deac-
tivated at prediction time. Their experiments demonstrated
that Bayesian models, which propagate uncertainty using MC
dropout, achieve higher accuracy early on and converge to
a higher overall accuracy compared to deterministic models
that rely on acquisition functions based on a single (softmax)
probability vector output [6]. This superior performance is
attributed to the enhanced epistemic uncertainty estimation in
the Bayesian model.

Fig. 2. Test accuracy vs. number of acquired images for BALD and Var-
Ratio acquisition functions. Bayesian CNN (red) and a deterministic CNN
(blue). Source: [6]

C. Bayesian CNNs vs. Available Active and Semi-Supervised
Learning Techniques

At the time, the only active learning approach the authors
could compare their Bayesian CNNs to was Zhu et al.’s ap-
proach using RBF kernels and similarity graphs [10]. However,

4Accuracy is defined as the proportion of correctly classified instances out
of the total number of instances.

it was only conceived for binary classification, which required
a slight modification of the experiment setup to two-digit
classification; everything else remained the same. Just like the
CNNs with different acquisition functions (this time leaving
out Mean STD), the RBF kernel approach was trained with the
same initial training set and then given 10 additional labeled
data points from the pool at each iteration. Over 100 iterations,
Gal et al. found the RBF kernel approach to significantly
underperform compared to all acquisition functions, including
the baseline random acquisition function. Results did not
improve even after replacing the RBF kernel with a CNN [6].

Subsequently, the performance of Bayesian CNNs with
the different acquisition functions was compared to semi-
supervised models that have set benchmarks for the MNIST
dataset, most notably [11], [13]. It is important to note that
in comparison to Gal et al.’s active learning approach, these
techniques were trained with 1000 labeled MNIST data points,
validation sets of 5000-10000 data points, and the remaining
set of 49,000 unlabeled images, whereas the Bayesian CNNs
continue to be trained like in the original setup with 20 initial
images and 100 iterations à 10 added data points from the
pool, thus having access to a mere 1000 labeled training data
points in total and not taking into account the distribution
of the remaining unlabeled data. However, the validation set
used to optimize weight decay (regularization) was extended
to comprise 5000 data points instead of the original 100.

TABLE I
TEST ERROR ON MNIST WITH 1000 LABELLED TRAINING SAMPLES,

COMPARED TO SEMI-SUPERVISED TECHNIQUES. SOURCE: [6]

Technique Test error
Semi-supervised:
Semi-sup. Embedding [12] 5.73%
Transductive SVM [12] 5.38%
MTC [45] 3.64%
Pseudo-label [46] 3.46%
AtlasRBF [47] 3.68%
DGN [11] 2.40%
Virtual Adversarial [48] 1.32%
Ladder Network (Γ-model) [13] 1.53%
Ladder Network (full) [13] 0.84%
Active learning with various acquisitions:
Random 4.66%
BALD 1.80%
Max Entropy 1.74%
Var Ratios 1.64%

In their experiments, the authors found BALD, Max En-
tropy, and Variation Ratios paired with a Bayesian CNN to
outperform several semi-supervised techniques in terms of test
error; most notably [11]. An overview of the Bayesian CNNs
performance compared to other semi supervised approaches
is provided in Table I. After acquiring 1000 training points,
the test error for the active learning models was comparable
to semi-supervised models, with the Var Ratio acquisition
function achieving a 1.64% error rate, slightly higher than the
1.53% error rate of the semi-supervised Γ-model, but without
relying on additional unlabeled data.



D. The Batch Problem

In a subsequent study by the same researchers, it was
revealed that batch acquisition methods like those used in
Gal et al. often suffer from issues where the samples chosen
within a batch tend to be correlated, leading to the selection of
redundant information, even with relatively small subsets. This
correlation significantly diminishes the overall effectiveness of
the process. To tackle this issue, BatchBALD was developed
as a solution inspired by diversity-driven approaches [18].
It adapts the Bayesian Active Learning by Disagreement
(BALD) acquisition function to preferentially select points
that maximize mutual information with the model parameters,
thereby minimizing redundancy within the batch. Despite these
enhancements geared towards diversity awareness, direct com-
parisons of BatchBALD with coreset methods have not been
explored. Moreover, the initial testing of BatchBALD was
confined to less complex datasets like CINIC-10,5 rather than
more challenging datasets like CIFAR-100, where benchmark
data for coreset methods are available, such as those discussed
by [21].

E. Bayesian CNNs vs. Modern Ensemble Methods

Recent advances in active learning for image classification
have shown that ensemble methods now surpass the perfor-
mance of the Bayesian CNNs proposed by Gal et al. [6] as well
as coreset [21] on standard benchmark datasets like MNIST
and CIFAR-10. Ensemble-based methods have demonstrated
superior accuracy and robustness by leveraging the diversity
of multiple learning models initialized with different, random
weights. Unlike MC dropout approaches, ensemble methods
directly incorporate multiple independent model predictions,
reducing the variance and improving the confidence of the
predictions. At the time of writing, Gal et al. dismissed
ensembles as an alternative for the high-dimensional image
classification problem due to computational cost. However,
advances in computational power now allow for complex
ensemble models to be trained efficiently.

Fig. 3. Comparison of Keras standard CNN for MNIST test error
(accuracy) on MNIST vs. number of acquired images from the active
learning pool. Average and standard deviation (shaded area) over five
repetitions. Source: [22]

Beluch et al. [22] took advantage of these enhanced ca-
pabilities: They reproduced Gal et al.’s experiments with the

5A combination of augmented CIFAR-10 [49] and ImageNet [50] images.

Fig. 4. Comparison of DenseNet test error (accuracy) on CIFAR-10 vs.
number of acquired images from the active learning pool. Average and
standard deviation (shaded area) over five repetitions. Source: [22]

standard Keras CNN architecture for MNIST and random
acquisition as baseline, albeit only using the, by their in-
terpretation, best-performing acquisition function in Gal et
al.: Variation Ratios.6 In addition to replicating Gal et al.’s
setup, they tested an ensemble of 5 deterministic CNNs using
the Variation Ratio of the ensemble members’ predictions as
acquisition function. According to their experiments, on the
MNIST dataset, ensemble approaches consistently achieved
lower test errors and faster convergence to high accuracy with
fewer training images (see Figure 3). The ensemble variation
ratio (ENS-VarR) method significantly outperforms Bayesian
methods. Unlike Gal et al., Beluch et al. provide the standard
deviation based on five repetitions (vs. 3 in Gal et al.) in their
results.

It is important to note that due to the simpler nature of
MNIST (28x28 images, black and white, clearly contoured
digits) the differences in approaches are less discernible on
it. The advantage of CNNs is more pronounced on complex
datasets 7 like CIFAR-10 [49] (see Figure 4) or -100. Ge-
ometric (coreset) and single approaches proved less effective
than Bayesian or ensemble approaches in multiple experiments
[22], [53], [54]. This somewhat contradicts the original find-
ings by Sener and Savarese, although the experimental setups
differ in the model and amount of training data used [21].

Interestingly, Beluch et al. found that increasing the number
of ensemble models did not significantly affect performance;
an ensemble with only 3 members outperformed the other
active learning approaches, too. Moreover, the computational
efficiency of ensemble methods has seen substantial improve-
ments, making them more feasible for large-scale applications
compared to computationally intensive Bayesian methods.
Techniques like implicit ensembling have made it possible
to train these models without the prohibitive computational
costs previously associated with ensemble training. These
developments underscore a significant shift in active learn-
ing strategies, favoring ensemble methods for their practical
advantages in handling complex image datasets over Bayesian

6BatchBALD was not published yet.
7More complex model architectures, namely DenseNet [51] and Resnet18

[52], as well as a larger initial training set were used by Beluch et al. on
CIFAR-10 experiments [22], [53].



approaches.

F. Bayesian CNNs and Ensembles in Practice: Melanoma
Detection and Diagnosis of Diabetic Retinopathy

In medical imaging (example images provided in Figure
5), active learning is invaluable due to the high cost and
scarcity of expert annotations. For melanoma detection, the
task involved classifying dermoscopic images of skin lesions
as malignant or benign using the 2016 ISIC Archive [43]. In
this case, a Bayesian CNN approach was employed, building
on the work by Gal et al. with a model based on the VGG16
architecture [55], refined using data augmentation and MC
dropout for uncertainty estimation in the sampling process.
They started with an imbalanced set of initial training samples.
Meanwhile the test was sampled randomly but kept balanced.
New samples were iteratively selected based on the BALD
acquisition function through 20 MC dropout iterations per
unlabeled data point. Interestingly, using Variation Ratios
proved unfeasible with this dataset. Overall, the BALD ap-
proach significantly improved the model’s performance over
random acquisition in terms of AUC. The Bayesian approach
consistently outperformed the baseline, converging to higher
AUC scores faster. This was attributed to BALD avoiding the
selection of noisy points with high aleatoric uncertainty but
focusing on points that maximize epistemic uncertainty instead
[6]. The method was not compared to ensemble methods as
they arguably were not developed enough at the time.

Fig. 5. Example images for real-world experiments. Top: Skin cancer
(melanoma) lesions (left) vs. benign lesions (center, right). Fundus pho-
tographs for the diagnosis of diabetic retinopathy (bottom). Sources: [43],
[56].

For diabetic retinopathy – a condition affecting millions
globally and leading cause of blindness – active learning
has been applied to efficiently use expert-labeled data. Using
an InceptionV3 architecture [57] pre-trained on ImageNet
[50] and fine-tuned on a dataset of eye fundus images
[56], the ensemble-based Variation Ratios (ENS-VarR) method
achieved a very high AUC of 0.983 vs. 0.965 for random
acquisition after actively selecting 21,000 images out of the
total 128,175 [22]. For comparison, a state-of-the-art model
with access to the full training dataset (80% more data)
achieved an AUC of 0.991 [58]. This demonstrated the ca-
pability of ensemble methods on an imbalanced real-world
dataset. Unfortunately, the authors did not compare ENS-VarR
to MC dropout based VarR in this real-world setting although
doing so in the benchmarking studies.

V. CONCLUSION AND FUTURE RESEARCH

Deep Bayesian active learning with convolutional neural
networks has demonstrated substantial potential in efficiently
leveraging limited labeled data for image classification tasks.
By integrating MC dropout for approximate Bayesian in-
ference, this approach effectively quantifies epistemic model
uncertainty, which is crucial for active learning across various
domains. The comprehensive review and experiments pre-
sented indicate that acquisition functions such as BALD, Max
Entropy, and Variation Ratios, when combined with Bayesian
CNNs, outperform traditional active learning methods and
even some semi-supervised techniques. This is particularly
evident in complex datasets and real-world applications like
medical image analysis, where datasets are imbalanced and
the cost of obtaining labeled data is high.

However, recent advancements in ensemble methods have
shown superior performance compared to single-model
Bayesian approaches, particularly with more demanding
datasets like CIFAR-10/100. Ensemble techniques leverage the
higher diversity of multiple independent models, providing
more robust uncertainty estimates and achieving higher accu-
racy with fewer labeled samples. As computational resources
improve, the initial concerns about the computational cost
of ensemble methods are diminishing. Nonetheless, further
benchmarking of ensemble methods is needed to firmly estab-
lish their potential edge over other approaches, as they have
hitherto been left out of several benchmarking studies.

Future research should focus on developing more efficient
ensemble techniques, exploring hybrid approaches that com-
bine the strengths of Bayesian and ensemble methods, and
investigating their applicability in diverse real-world scenarios.
Despite these advancements, purely Bayesian approaches will
continue to have an advantage when training multiple models
is not feasible. This is especially relevant in frontier higher-
dimensional domains such as hyperspectral remote sensing
images or complex natural language processing, where the
computational cost of training multiple models remains a
significant consideration.
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APPENDIX: EXAMPLE APPROXIMATION OF VARIATION
RATIOS USING MC DROPOUT

To approximate the Variation Ratios in Bayesian CNNs, we
can follow the same approach as Gal et al. [6]. Given a training
set Dtrain, input data x, and predicted class y of C classes, the
variation ratio is defined as:

Var-Ratio[x] = 1−max
c

p(y = c|x,Dtrain)

Using the marginal likelihood identity:

p(y = c|x;Dtrain) =

∫
p(y = c|x;ω)p(ω|Dtrain) dω

we get:

Var-Ratio[x] = 1−max
c

∫
p(y = c|x,ω)p(ω|Dtrain) dω

Next, we can substitute the posterior p(ω|Dtrain) with our
approximation q∗(ω):

̂Var-Ratio[x] ≈ 1−max
c

∫
p(y = c|x,ω)q∗(ω) dω

Through T stochastic forward passes with dropout (MC
dropout), we get prediction probabilities:

{p̂1c , p̂2c , . . . , p̂Tc } = softmax(f ω̂t(x))

For each class, average the probability:

p̂c =
1

T

T∑
t=1

p̂tc

Using:

p̂c =
1

T

T∑
t=1

p̂tc ≈
∫

p(y = c|x,ω)q∗(ω) dω

we finally get:

̂Var-Ratio[x] ≈ 1−max
c

1

T

T∑
t=1

p̂tc ≈ 1−max
c

p̂c

Like for BALD, as T → ∞, it holds that:

̂Var-Ratio[x] ≈ Var-Ratio[x]

The approximated variation ratio converges to the real varia-
tion ratio of the model predictions given the input x.


