Deep Bayesian Active Learning with Image Data

based on the original research article of the same name by Gal et al. (2017)

Munich, July 16th 2024 Seminar "Machine learning with limited labels"

Nicolas Malz Computer Science and Statistics LMU Munich

Outline

Outline

The Active Learning problem for Image Classification

- Given a set of images ("dataset"), we want to create a model that
	- 1) …accurately classifies images, i.e. assigns them to the correct class,
	- 2) …all while having to label as little data as possible.
- **Challenge: High dimensionality** of inputs. An ImageNet image has 544509 features
- Consequence: feature extraction is very challenging, labelling is expensive

Takeaway 1: We need a powerful model capable of handling all these high-dimensional features well

Related Work: What others had tried so far

Original Image

RBF Kernel Output (sigma=10.0)

RBF Kernel Output (sigma=100.0)

RBF Kernel downsides:

- No spatial awareness
- Loss of edge information
- Still (too) high-dimensional
- Uniform treatment of all parts of an image

The Rise of Deep Learning for Image Classification

• **Neural Networks** are just powerful, complex compositions of functions, capable of capturing linear and nonlinear relationships in the data

- **Convolutional Neural Networks** (CNNs) have proven very effective at image classification tasks
- CNNs **perform feature selection efficiently** as opposed to using a classic fully connected neural network (aka Multi-Layer Perceptron)

Takeaway 2: Using a Convolutional Neural Network motivates the active learning approach!

Neural Network motivates the active learning approach!

The Challenge of Integrating Deep and Active Learning

Active Learning Checklist

✓ Model

- \checkmark Dataset with a few labelled data points
- \checkmark Rest of unlabelled data points in a pool
- ? **Acquisition mechanism** to add new labelled data points from pool to training set
	- **Find those datapoints that are likely to improve the model's performance**
	- **Assumption:** Model can learn most by looking at its most uncertain predictions

Acquisition Function

 \Leftrightarrow Find those unlabelled data points that maximize the acquisition function

Options for this function:

- Max-Entropy
- Mutual Information (Bayesian Active Learning by Disagreement, BALD)
- Variation Ratios
- …
- Random (baseline)

The Challenge of Integrating Deep and Active Learning

Acquisition Functions

Current CNN setup

- Input of our model: an image
- Output of our model: class that image belongs to
	- **Where's the uncertainty?**

How do we get $p(y = c | \mathbf{x}; \mathcal{D}_{train})$?

In other words: How do we quantify model prediction uncertainty if Neural Networks only provide us with a deterministic point estimate?

Takeaway 3: We need to quantify how confident the model is in its predictions to use it in an active learning setting.

Where is the model prediction uncertainty in a CNN?

Sources: The author's own elaboration based on the model used by Gal et al. (2017) and Keras standard CNN implementation example for MNIST (GitHub: @fchollet, 2015)

Where is the prediction uncertainty in a CNN?

Sources: The author's own elaboration based on the model used by Gal et al. (2017) and Keras standard CNN implementation example for MNIST (fchollet, 2015)

Where is the prediction uncertainty in a CNN?

Takeaway 4: In a classic CNN for classification, uncertainty is displayed in the final Softmax layer.

Sources: The author's own elaboration based on Bishop and Bishop (2024)

Example: Inherent ambiguity in the data

Max. uncertainty \Leftrightarrow Softmax yields a uniform distribution

What do the images show? This is just a point estimate of model uncertainty!

Sources: The author's own elaboration based on Bishop and Bishop (2024), CIFAR-10 by Krizhevsky et al. (2009), and Gal et al. (2016, 2017)

The problem with output layer (Softmax) probabilities

- In our model, the Softmax probabilities for a given input are a **reflection of inherent noise in the data**
	- **:= aleatoric uncertainty**
- **They do not capture the model's uncertainty about its parameters**
	- We want to use active learning to improve our model, i.e. its parameters!
	- **:= epistemic uncertainty**
- **In essence: How certain are we about a single prediction vs. about our model's parameters being correct**

Takeaway 5: A classic CNN first and foremost captures aleatoric uncertainty, but we want a measure of epistemic uncertainty, i.e. uncertainty w.r.t. our **model parameters**, for our active learning setting.

New Perspective: Bayesian Neural Network

- In a Bayesian Neural Network, **weights are not fixed** (point estimates) but **have a distribution**
- We therefore include **uncertainty w.r.t. the model's weights** in training
- As data 'flows' through the model (training), these distributions are updated ("marginal" Bayes' Theorem)
- Computing the actual posterior distribution (marginals) of weights given the data and prior is computationally intractable:

$$
p(y = c | \mathbf{x}, \mathcal{D}_{\text{train}}) = \int p(y = c | \mathbf{x}, \omega) p(\omega | \mathcal{D}_{\text{train}}) d\omega
$$

Takeaway 6: We need a tractable approximation for the posterior.

Solution: Use Dropout at Prediction Time for Inference

Dropout is a **regularization** technique **randomly sets nodes from the network to zero during training**; a way to simulate model averaging without training multiple models.

What happens if we leave dropout on during prediction?

Solving the Uncertainty Problem in Deep Learning

- If we turn dropout off during prediction: *Deterministic*
	- **We always get the same Softmax distribution and therefore the same prediction!**
- If we turn dropout on during prediction: *Probabilistic*
	- We get different Softmax distributions every time we predict ("stochastic forward pass")
	- We get a distribution over the model's predictions conditional on its weights and input data
	- Much more informative measure of model uncertainty
- **Bayesian interpretation:** Posterior distribution for a given input given the training data and model parameters

Takeaway 7: Dropout at prediction time provides us with a measure of epistemic and aleatoric uncertainty.

Example: Softmax Layer Probabilities vs. MC Dropout

MC Entropy: 2.29
True Label: dog

0.175 0.150 0.125 0.100 0.075 0.050 0.025 0.000 **KOD Pipe**

Softmax Distribution

MC Softmax Distribution 0.200 0.175 0.150 0.125 0.100 0.075 0.050 0.025 o deer 80g KOD votes guilt ruck Model is actually more **off target** than it appeared

Model is actually more **off target** than it appeared

Model is actually more **on target** than it appeared

Entropy: 2.30

True Label: airplane

Sources: The author's own elaboration based on Bishop and Bishop (2024), CIFAR-10 by Krizhevsky et al. (2009), and Gal et al. (2016, 2017) Remarks: 1000 stochastic forward passes were used in this example.

Bringing it all together: Deep Bayesian Active Learning

Assuming **T** stochastic forward passes per sample¹ from unlabeled pool

 $T\rightarrow\infty$ $p(y = c | \mathbf{x}; D_{train})$

Takeaway 8: As the number of dropout iterations approaches infinity, the approximate class probability converges to the real probability. We can now compute our acquisition functions such as entropy from earlier.

1: Samples are processed in batches, mostly out of computational efficiency considerations. The problems this carries with it are addressed through BatchBALD in Kirsch et al. (2019) Sources: The author's own elaboration based on Gal et al. (2016)

Bringing it all together: Deep Bayesian Active Learning

passes per sample¹ from unlabeled pool

For model weights ω , input data **x**, and train set D_{train} , t stochastic forward passes it holds that:

$$
p(y = c | \boldsymbol{x}, \mathcal{D}_{\text{train}}) = \int p(y = c | \boldsymbol{x}, \boldsymbol{\omega}) p(\boldsymbol{\omega} | \mathcal{D}_{\text{train}}) d\boldsymbol{\omega}
$$

$$
\approx \int p(y = c | \boldsymbol{x}, \boldsymbol{\omega}) q^*(\boldsymbol{\omega}) d\boldsymbol{\omega}
$$

$$
\approx \frac{1}{T} \sum_{t=1}^{T} p(y = c | \boldsymbol{x}, \boldsymbol{\omega}_t)
$$

Takeaway 8: As the number of dropout iterations approaches infinity, the approximate class probability converges to the real probability. We can now compute our acquisition functions such as entropy from earlier. Assuming **^T** stochastic forward

1: Samples are processed in batches, mostly out of computational efficiency considerations. The problems this carries with it are addressed through BatchBALD in Kirsch et al. (2019) Sources: The author's own elaboration based on Gal et al. (2016)

Experimental setup

Sources: MNIST by LeCun (1998), Keras implementation by fchollet (2015); CIFAR-10 by Krizhevsky et al. (2009) and DenseNet architecture by

Experiment 1: Bayesian outperforms deterministic approach

Key finding 1: Incorporating considerations about epistemic model uncertainty improves the active learning speed and converges to higher accuracy

Experiment 2: Variation Ratios and BALD are the bestperforming acquisition functions in this setting

Key finding 2: Variation Ratios/Max Entropy/BALD perform significantly better than random and outperform numerous semi-supervised techniques available at the time.

Experiment 3: Why everything I told you could be considered outdated

1 2

Key finding 3: Ensembles outperform Monte Carlo Dropout approach. Differences are more pronounced on complex tasks (CIFAR-10, -100 vs. MNIST). **Why?**

Experiment 4: Real-world applications

Melanoma

Nevus

Seborrheic Keratosis

Melanoma detection

Diabetic Retinopathy detection

Key finding 4: Both MC dropout based approaches and ensembles have provided a significant performance boost in tricky domains with expensive data labelling such as medical imaging and diagnosis

Outline

What does the future hold for high-dimensional active learning?

- Methods will become even more powerful and accurate as computational power and optimization capabilities increase
- Active learning paradigm can be applied to even higher-dimensional features, such as natural language or hyperspectral images (pictured)
- Even better uncertainty estimation for acquisition functions
- Even more powerful models, e.g. Transformer architectures in vision
- Quantum approaches?

Hyperspectral remote sensing images

THANK YOU!

Nicolas Malz (n.malz@campus.lmu-munich.de)

Discussion suggestion: Why did the ensemble models eventually outperform the Bayesian approach?

Works cited

Beluch, W. H., et al. "The Power of Ensembles for Active Learning in Image Classification". In: Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 9368–9377.

Bishop, C. (2006). "Pattern Recognition and Machine Learning". New York, USA: Springer Nature.

Bishop, C. and Bishop, H. (2024). "Deep Learning. Concepts and Foundations". New York, USA: Springer Nature.

Gal, Y. and Ghahramani, Z. (2016). "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning". In: Proceedings of The 33rd International Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1050– 1059. URL: https://proceedings.mlr.press/v48/gal16. html.

Gal, Y., Islam, R. and Ghahramani, Z. (2017). "Deep Bayesian Active Learning with Image Data". In: Proceedings of the 34th International Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Re- search. PMLR, June 2017, pp. 1183–1192. URL: https: //proceedings.mlr.press/v70/gal17a.html.

Kingma, D. P. et al. "Semi-supervised learning with deep generative models". (2014). In: Advances in neural information processing sys tems 27 (2014).

Kirsch, A., van Amersfoort, J. and Gal, Y. (2018). BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning. 2019. DOI: 10.48550/ ARXIV.1906.08158. URL: https://arxiv.org/abs/1906. 08158.

Krizhevsky, A., Nair, V. and Hinton, G. (2009). "CIFAR-10 (Canadian Institute for Advanced Research)". In: (2009). URL: http://www.cs.toronto.edu/ ∼kriz/cifar.html.

LeCun, Y. and Cortes, C. (1998). The MNIST database of handwritten digits. http : / / yann . lecun . com / exdb / mnist/. 1998.

Srivastava, N. et al. (2014). "Dropout: a simple way to prevent neural networks from overfitting". In: The journal of machine learning research 15.1 (2014), pp. 1929– 1958.

Zhu, XJ, Lafferty, J. and Ghahramani, Z. (2003). "Combining active learning and semi-supervised learning using gaussian fields and harmonic functions". In: ICML 2003 workshop on the continuum from labeled to unlabeled data in machine learning and data mining. Vol. 3. 2003, pp. 58–65.