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The active learning problem for high-dimensional tasks



The Active Learning problem for Image Classification
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Takeaway 1: We need a powerful model

capable of handling all these high-dimensional
features well

Sources: The author's own elaboration, CIFAR-10 dataset by Krizhevsky et al. (2009)
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Related work: The early days of active learning for images



Related Work: What others had tried so far
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Abstract

Recently active learning has attracted a lot of attention
in computer vision field, as it is time and cost consuming
10 prepare a good set of labeled images for vision data
analysis. Most existing active learning approaches em-
ployed in computer vision adopt most uncertainty measures
as instance selection criteria. Although most uncertainty
query slicil 3 3 -
stances, they fail 10 take information in the large amount of
unlabeled instances into account and are prone 1o query-
ing outlers. In this paper, we present a novel adaptive ac-
sive learning approach that combines an information den-
sity measure and a most uncertainty measure together to
nlm criical instances to label for image classfications.

on two essential tasks of computer vision,
ob,m recognition and scene recognition, demonstrate the
efficacy of the proposed approach.

1. Introduction

Image classification has a long history in computer
sion rescarch, and it emains & major challenge due (0 the
pe, color,
size, or environmental conditions. To build a mb\ul im-
age classifier, it typically requires a large number of labeled
training instances. For example. 10,000 instances of hand-
writing digits are used for training classifiers in (33]. It is
time and cost consuming to prepare such a large set of la-
beled training instances. On the other hand, one fascinating

with only few
Is it possible for a computer to achieve this with the solid
support of machine learning techniques? This is the mo-
tivation of this rescarch. We aim to develop an cffective

a limited amount of labeled training instances.
Training a good clasifir with minimal labeling cost s 3
Ran-

859

domly selecting unlabeled instances 1o label is inefficient
in many situations, since non-informative or redundant in-
stances might be selected. Aiming 1o reduce labeling effort,
active learning methods have been adopted to control the
Iabeling process. Recently, active lcarning has been studied
in computer vision [3, 14, 13, 15, 16, focusing on pool-
based setting. These works however merely evaluate the in-
formativeness of instances with most uncertainty measures,
which assume an instance with higher classification uncer-
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g the labeled data set. In
few instances for semi-
active to let the learning
to label, rather than sc-

practice known as pool-
ampling.

carch in active learning.
0)select queris to min-

und ctal. (1997) employ
ety a point whenever

bt of the active learning
age of the large amount
are selected. Exceptions
98) who use EM with un-

e is a large litcrature on
dental design in statistics;
e a survey of experimen-
cive.

Juced a semi-supervised
2d on Gaussian random
paper we demon-
a combination of active
ing. In brief, te frame-

tainty is more critical to label. Although the most uncer- pate the expected gener-
tainty measures are effective on selecting informative in- int, which leads t0 a bet-
stances in many scenarios, they mly capture the relation- sively selecting the point
ship of

model and fai b fata set, the classifier can

ained in the unlabeled data into account. This may lead
10 selecting non-useful instances to label. For example, an
outlier can be most uncertain to classify, but uscless to
bel. This suggests representativeness of the candidate in-
stance in addition to the classification uncertainty should be
considered in developing an active leaming strategy.

In this paper, we propose a novel adaptive active lear-
ing strategy that exploits information provided by both the
Iabeled instances and the unlabeled instances for query se-
lection. Our new query sclection measure is an adaptive
combination of two terms: an uncertainty term based on
the current classifir trained on the labeled instances; and

that he mutual infor-
mation between the candidate instance and the remaining
unlabeled instances. The combination of the two terms is

an adaptive combination of the two terms by selecting the
weight parameter to minimize the expected classification
error on unlabeled instances. We conduct experiments on
a few benchmark image classification datasets and present
promising results for the proposed active leaming method.

2. Related Work

A large number of active leaming techniques have been
developed in the lterature. Most of them have been focused

and remaining unlabeled
etic data, text classifica-

DC, 2003.

Original Image RBF Kernel Output (sigma=10.0) RBF Kernel Output (sigma=100.0)

RBF Kernel downsides:
No spatial awareness
Loss of edge information
Still (too) high-dimensional
Uniform treatment of all parts of an image




The Rise of Deep Learning for Image Classification
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Sources: The author’'s own elaboration, ImageNet Competition Benchmarks (2022)

* Neural Networks are just powerful,
complex compositions of functions,
capable of capturing linear and non-
linear relationships in the data

« Convolutional Neural Networks
(CNNs) have proven very effective at
Image classification tasks

 CNNs perform feature selection
efficiently as opposed to using a
classic fully connected neural network
(aka Multi-Layer Perceptron)

Takeaway 2: Using a Convolutional

Neural Network motivates the active
learning approach!




The Rise of Deep Learning for Image Classification

ImageNet Top-5 Error Over Years by Model
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Takeaway 2: Using a Convolutional
Neural Network motivates the active

learning approach!

Sources: The author's own elaboration, ImageNet
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Method: Uncertainty in neural networks; Monte Carlo dropout; Bayesian CNN



The Challenge of Integrating Deep and Active Learning

Active Learning Checklist

Acquisition Function

¥ Model | & Find those unlabelled data points that
v' Dataset with a few labelled data points maximize the acquisition function
v Rest of unlabelled data points in a pool
? Acquisition mechanism to add new Options for this function:
labelled data points from pool to training <  Max-Entropy
set - Mutual Information (Bayesian Active
« Find those datapoints that are Learning by Disagreement, BALD)
likely to improve the model’s « Variation Ratios
performance . .
« Assumption: Model can learn most  Random (baseline)
by looking at its most uncertain \_

predictions

Sources: The author’'s own elaboration, Gal et al. (2017)



The Challenge of Integrating Deep and Active Learning

Acquisition Functions

Entropy H[y|x; Dirain]

Current CNN setup

. Input of our model: an image
* Output of our model: class that image
belongs to
 Where’s the uncertainty?

= Zp(y = C|X; Dtrain) logp(y = C|X; Dtrain)
c

BALD ]I[y: w|x; Dtrain] <

= H{y|%; Derain] — Ep(w|Dyu o) HY1%; Derainl] How do we get p(¥ = ¢|X; Dirain) ?
— In other words: How do we quantify model
prediction uncertainty if Neural Networks
only provide us with a deterministic point
\__ | estimate?

Var-Ratio[x] = 1 — max p(y|z, Dirain)
y

Takeaway 3: We need to quantify how

confident the model is in its predictions to
use it in an active learning setting.

Sources: The author’'s own elaboration, Gal et al. (2017)



Where Is the model prediction uncertainty in a CNN?
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Sources: The author’'s own elaboration based on the model used by Gal et al. (2017) and Keras standard CNN implementation example for MNIST (GitHub: @fchollet, 2015)



Where Is the prediction uncertainty in a CNN?
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Sources: The author’'s own elaboration based on the model used by Gal et al. (2017) and Keras standard CNN implementation example for MNIST (fchollet, 2015)
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Where Is the prediction uncertainty in a CNN?

Softmax ‘probability’

v
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Takeaway 4: In a classic CNN for classification, uncertainty is displayed in the final Softmax layer.

Sources: The author‘s own elaboration based on Bishop and Bishop (2024)



Example: Inherent ambiguity in the data

Entropy: 2.18
True Label: frog Softmax Distribution

Softmax ‘probability’

v

Classl

Class2

Entropy: 2.19
True Label: cat Softmax Distribution

Class9

Class10

Max. uncertainty <~ Softmax
yields a uniform distribution

What do the images show?
This is just a point estimate of model uncertainty!

Sources: The author's own elaboration based on Bishop and Bishop (2024), CIFAR-10 by Krizhevsky et al. (2009), and Gal et al. (2016, 2017)



The problem with output layer (Softmax) probabilities

Softmax ‘probability’ L ) _
* In our model, the Softmax probabilities for a given input are a

reflection of inherent noise in the data

A 4

Class1 « :=aleatoric uncertainty
——  They do not capture the model’s uncertainty about its
parameters
« We want to use active learning to improve our model, i.e. its
parameters!
« .= epistemic uncertainty
—— * In essence: How certain are we about a single prediction vs.
about our model’s parameters being correct
Class10

Takeaway 5: A classic CNN first and foremost captures aleatoric
uncertainty, but we want a measure of epistemic uncertainty, i.e.

uncertainty w.r.t. our model parameters, for our active learning
setting.

Sources: The author‘s own elaboration based on Bishop and Bishop (2024) and Gal et al. (2016, 2017)



New Perspective: Bayesian Neural Network

— Zoomed in view

Sources: The author‘s own elaboration based on Gal et al. (2016)

* In a Bayesian Neural Network, weights are not
fixed (point estimates) but have a distribution

» We therefore include uncertainty w.r.t. the
model’s weights in training

» As data flows’ through the model (training), these
distributions are updated (“marginal” Bayes’
Theorem)

« Computing the actual posterior distribution
(marginals) of weights given the data and prior is
computationally intractable:

B = @] 5% D) = / 5l = @ | 57,6859 | B

Takeaway 6: We need a tractable approximation for

the posterior.



Solution: Use Dropout at Prediction Time for Inference

Hidden

What happens if we leave
dropout on during prediction?

Dropout is a regularization technique
randomly sets nodes from the network to
zero during training; a way to simulate model
averaging without training multiple models.

Sources: The author‘s own elaboration based on Srivastava et al. (2014)



Solving the Uncertainty Problem in Deep Learning

)
&
@ —
*\@ ‘ Softmax ‘probability ‘ ‘
QO& = If we turn dropout off during prediction: Deterministic
© N « We always get the same Softmax distribution and
O Class2
@0 s o] therefore the same prediction!
%c’)\ ———| If we turn dropout on during prediction: Probabilistic
| Softmax probabilty | «  We get different Softmax distributions every time we
ot ] | predict (“stgch.asti.c forward pass”) o
] « We get a distribution over the model’s predictions
conditional on its weights and input data
 Much more informative measure of model uncertainty
| Bayesian interpretation: Posterior distribution for a given
Class9 5 5 - =
EF input given the training data and model parameters

Takeaway 7: Dropout at prediction time provides us with a

measure of epistemic and aleatoric uncertainty.

Sources: The author‘s own elaboration based on Gal et al. (2016)



Example: Softmax Layer Probabilities vs. MC Dropout

MC Entropy: 2.29
True Label: dog

Entropy: 2.30
True Label: dog

Softmax Distribution MC Softmax Distribution

o Model is actually

more off target
than it appeared
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True Label: airplane 0200 Softmax Distribution True Label: airplane 0200 MC Softmax Distribution
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Sources: The author's own elaboration based on Bishop and Bishop (2024), CIFAR-10 by Krizhevsky et al. (2009), and Gal et al. (2016, 2017)
Remarks: 1000 stochastic forward passes were used in this example.



Bringing it all together: Deep Bayesian Active Learning

S
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e Takeaway 8: As the number of dropout iterations approaches
infinity, the approximate class probability converges to the real

probability. We can now compute our acquisition functions

Assuming T stochastic forward such as entropy from earlier.

passes per sample! from
unlabeled pool

1: Samples are processed in batches, mostly out of computational efficiency considerations. The problems this carries with it are addressed through BatchBALD in Kirsch et al. (2019)
Sources: The author's own elaboration based on Gal et al. (2016)



Bringing it all together: Deep Bayesian Active Learning

For model weights w, input data x, and train set Dy, , t Stochastic

S forward passes it holds that:
(\
&*\e —— p(y = C|$:~ Ij’lrﬂin) — /p(y — C|ﬂ‘:, w)p(W|Dtrain)d’W
<8 =a
Qo‘ | Loms2 | .
O\@ ‘ Softmax ‘probability’ ‘ . ~ p(y = C|$" w)q (W)dw
[ |
)Q( ‘ Softmax ‘probability’ ‘ X 1 T
caus | | o > ply = cle,w)
| Clss2 | t=1
=3 I
: Takeaway 8: As the number of dropout iterations approaches
infinity, the approximate class probability converges to the real
probability. We can now compute our acquisition functions

such as entropy from earlier.

Assuming T stochastic forward
passes per sample! from
unlabeled pool

1: Samples are processed in batches, mostly out of computational efficiency considerations. The problems this carries with it are addressed through BatchBALD in Kirsch et al. (2019)
Sources: The author's own elaboration based on Gal et al. (2016)
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Experiments: Deterministic CNN vs. Bayesian CNN vs. Ensembles



Experimental setup
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Standard Keras MNIST implementation DenseNet architecture

Sources: MNIST by LeCun (1998), Keras implementation by fchollet (2015); CIFAR-10 by Krizhevsky et al. (2009) and DenseNet architecture by



Experiment 1. Bayesian outperforms deterministic approach
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Key finding 1: Incorporating considerations about epistemic model uncertainty improves the active

learning speed and converges to higher accuracy

Sources: Gal et al. (2017)




Experiment 2: Variation Ratios and BALD are the best-

performing acquisition functions in this setting

Semi-supervised Techniques
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Key finding 2: Variation Ratios/Max Entropy/BALD perform significantly better than random and
outperform numerous semi-supervised techniques available at the time.

Sources: Gal et al. (2017), own adaptation based on Gal et al. (2017)



Experiment 3: Why everything | told you could be considered
outdated
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Key finding 3: Ensembles outperform Monte Carlo Dropout approach. Differences are more pronounced

on complex tasks (CIFAR-10, -100 vs. MNIST). Why?

Sources: Beluch et al. (2018)



Experiment 4: Real-world applications

Melanoma Nevus Seborrheic Keratosis

L3 i B¢

-

: “
s
= N

Melanoma detection Key finding 4: Both MC dropout based
approaches and ensembles have
provided a significant performance boost

in tricky domains with expensive data
labelling such as medical imaging and
diagnosis

Diabetic Retinopathy detection

Sources: ISIC 2016, Beluch et al. 2018
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Conclusion, Outlook, and Discussion



What does the future hold for high-dimensional active
learning?

« Methods will become even more powerful and
accurate as computational power and
optimization capabilities increase

« Active learning paradigm can be applied to even
higher-dimensional features, such as natural
language or hyperspectral images (pictured)

« Even better uncertainty estimation for acquisition
functions

« Even more powerful models, e.g. Transformer
architectures in vision

* Quantum approaches?

Hyperspectral remote sensing images

Image Source: https://eos.org/opinions/realizing-machine-learnings-promise-in-geoscience-remote-sensing



THANK YOU!

Nicolas Malz (n.malz@campus.Imu-munich.de)
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