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The Active Learning problem for Image Classification

Dataset

• Given a set of images (“dataset”), we 

want to create a model that

• 1) …accurately classifies images, 

i.e. assigns them to the correct 

class,

• 2) …all while having to label as little 

data as possible.

• Challenge: High dimensionality of 

inputs. An ImageNet image has 544509 

features

• Consequence: feature extraction is very 

challenging, labelling is expensive

Sources: The author’s own elaboration, CIFAR-10 dataset by Krizhevsky et al. (2009)

Features

Takeaway 1: We need a powerful model 

capable of handling all these high-dimensional 

features well
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Related Work: What others had tried so far

RBF Kernel downsides:

• No spatial awareness

• Loss of edge information

• Still (too) high-dimensional

• Uniform treatment of all parts of an image

Sources: The author’s own elaboration, scikit-learn image dataset (2024)



The Rise of Deep Learning for Image Classification

Sources: The author’s own elaboration, ImageNet Competition Benchmarks (2022)

• Neural Networks are just powerful, 

complex compositions of functions, 

capable of capturing linear and non-

linear relationships in the data

• Convolutional Neural Networks 
(CNNs) have proven very effective at 

image classification tasks

• CNNs perform feature selection 

efficiently as opposed to using a 

classic fully connected neural network 
(aka Multi-Layer Perceptron)

Takeaway 2: Using a Convolutional 

Neural Network motivates the active 

learning approach!

Convolutional Neural 

Networks introduced
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The Challenge of Integrating Deep and Active Learning

Sources: The author’s own elaboration, Gal et al. (2017)

Active Learning Checklist

✓ Model

✓ Dataset with a few labelled data points

✓ Rest of unlabelled data points in a pool

？ Acquisition mechanism to add new 

labelled data points from pool to training 
set

• Find those datapoints that are 

likely to improve the model’s 

performance

• Assumption: Model can learn most 
by looking at its most uncertain 

predictions

⟺ Find those unlabelled data points that 

maximize the acquisition function

Options for this function:

• Max-Entropy
• Mutual Information (Bayesian Active 

Learning by Disagreement, BALD)

• Variation Ratios

• …

• Random (baseline)

Acquisition Function



The Challenge of Integrating Deep and Active Learning

Sources: The author’s own elaboration, Gal et al. (2017)

Takeaway 3: We need to quantify how 

confident the model is in its predictions to 

use it in an active learning setting.

Acquisition Functions

• Input of our model: an image

• Output of our model: class that image 

belongs to

• Where’s the uncertainty?

How do we get                                 ?

In other words: How do we quantify model 

prediction uncertainty if Neural Networks 

only provide us with a deterministic point 
estimate?

Current CNN setup

Entropy

BALD

Var-R



Where is the model prediction uncertainty in a CNN?

2 xReLu(Conv2D) MaxPool2D Dropout Flatten
ReLu(Dense

)
Dropout Softmax(Dense) Predicted ClassInput

Sources: The author’s own elaboration based on the model used by Gal et al. (2017) and Keras standard CNN implementation example for MNIST (GitHub: @fchollet, 2015)



Where is the prediction uncertainty in a CNN?
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Explored in detail



Where is the prediction uncertainty in a CNN?

10

Outputs of Dense2 Apply softmax

…

Softmax ‘probability’

Class1

Class2

Class9

Class10

…
Predicted class

Takeaway 4: In a classic CNN for classification, uncertainty is displayed in the final Softmax layer.

Sources: The author‘s own elaboration based on Bishop and Bishop (2024)



Example: Inherent ambiguity in the data

Sources: The author‘s own elaboration based on Bishop and Bishop (2024), CIFAR-10 by Krizhevsky et al. (2009), and Gal et al. (2016, 2017)

…

Softmax ‘probability’

Class1

Class2

Class9

Class10

…

Max. uncertainty  Softmax 

yields a uniform distribution
What do the images show?

This is just a point estimate of model uncertainty!



The problem with output layer (Softmax) probabilities

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

• In our model, the Softmax probabilities for a given input are a 

reflection of inherent noise in the data

• := aleatoric uncertainty

• They do not capture the model’s uncertainty about its 

parameters
• We want to use active learning to improve our model, i.e. its 

parameters!

• := epistemic uncertainty

• In essence: How certain are we about a single prediction vs. 

about our model’s parameters being correct 

Takeaway 5: A classic CNN first and foremost captures aleatoric 

uncertainty, but we want a measure of epistemic uncertainty, i.e. 

uncertainty w.r.t. our model parameters, for our active learning 

setting.

Sources: The author‘s own elaboration based on Bishop and Bishop (2024) and Gal et al. (2016, 2017)



New Perspective: Bayesian Neural Network

Sources: The author‘s own elaboration based on Gal et al. (2016)

Input

 idden

 utput

• In a Bayesian Neural Network, weights are not 

fixed (point estimates) but have a distribution

• We therefore include uncertainty w.r.t. the 

model’s weights in training

• As data ‘flows’ through the model (training), these 
distributions are updated (“marginal” Bayes’ 

Theorem)

• Computing the actual posterior distribution 

(marginals) of weights given the data and prior is 

computationally intractable:

Zoomed in view

weight

weight distribution

Takeaway 6: We need a tractable approximation for 

the posterior.



Solution: Use Dropout at Prediction Time for Inference

Dropout is a regularization technique 

randomly sets nodes from the network to 

zero during training; a way to simulate model 

averaging without training multiple models.

What happens if we leave 

dropout on during prediction?

Input

Hidden

Output Input

Hidden

Output

Sources: The author‘s own elaboration based on Srivastava et al. (2014)



Solving the Uncertainty Problem in Deep Learning

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

• If we turn dropout off during prediction: Deterministic

• We always get the same Softmax distribution and 

therefore the same prediction!

• If we turn dropout on during prediction: Probabilistic

• We get different Softmax distributions every time we 
predict (“stochastic forward pass”)

• We get a distribution over the model’s predictions 

conditional on its weights and input data

• Much more informative measure of model uncertainty

• Bayesian interpretation: Posterior distribution for a given 
input given the training data and model parameters

Takeaway 7: Dropout at prediction time provides us with a 

measure of epistemic and aleatoric uncertainty.
Sources: The author‘s own elaboration based on Gal et al. (2016)



Example: Softmax Layer Probabilities vs. MC Dropout

Model is actually 

more off target 

than it appeared

Model is actually 

more off target 

than it appeared

Model is actually 

more on target 

than it appeared

Sources: The author‘s own elaboration based on Bishop and Bishop (2024), CIFAR-10 by Krizhevsky et al. (2009), and Gal et al. (2016, 2017)

Remarks: 1000 stochastic forward passes were used in this example.



Bringing it all together: Deep Bayesian Active Learning

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

Takeaway 8: As the number of dropout iterations approaches 

infinity, the approximate class probability converges to the real 

probability. We can now compute our acquisition functions 

such as entropy from earlier.

1: Samples are processed in batches, mostly out of computational efficiency considerations. The problems this carries with it  are addressed through BatchBALD in Kirsch et al. (2019)

Sources: The author‘s own elaboration based on Gal et al. (2016)

Assuming T stochastic forward 

passes per sample1 from 

unlabeled pool



Bringing it all together: Deep Bayesian Active Learning

1: Samples are processed in batches, mostly out of computational efficiency considerations. The problems this carries with it  are addressed through BatchBALD in Kirsch et al. (2019)

Sources: The author‘s own elaboration based on Gal et al. (2016)

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

…

Softmax ‘probability’

Class1

Class2

Class 

Class10

…

Takeaway 8: As the number of dropout iterations approaches 

infinity, the approximate class probability converges to the real 

probability. We can now compute our acquisition functions 

such as entropy from earlier.
Assuming T stochastic forward 

passes per sample1 from 

unlabeled pool

For model weights ω, input data x, and train set Dtrain , t stochastic 

forward passes it holds that:
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Experimental setup

Standard Keras MNIST implementation DenseNet architecture

Sources: MNIST by LeCun (1998), Keras implementation by fchollet (2015); CIFAR-10 by Krizhevsky et al. (2009) and DenseNet architecture by 

1 2



Experiment 1: Bayesian outperforms deterministic approach

Key finding 1: Incorporating considerations about epistemic model uncertainty improves the active 

learning speed and converges to higher accuracy

1

Sources: Gal et al. (2017)



Experiment 2: Variation Ratios and BALD are the best-
performing acquisition functions in this setting

1

Key finding 2: Variation Ratios/Max Entropy/BALD perform significantly better than random and 

outperform numerous semi-supervised techniques available at the time.

Sources: Gal et al. (2017), own adaptation based on Gal et al. (2017)



Experiment 3: Why everything I told you could be considered 
outdated

Standard Keras CNN on MNIST CIFAR-10 on DenseNet architecture

Key finding 3: Ensembles outperform Monte Carlo Dropout approach. Differences are more pronounced 

on complex tasks (CIFAR-10, -100 vs. MNIST). Why?

Sources: Beluch et al. (2018)

21



Experiment 4: Real-world applications

Melanoma detection

Diabetic Retinopathy detection

Key finding 4: Both MC dropout based 

approaches and ensembles have 

provided a significant performance boost 

in tricky domains with expensive data 

labelling such as medical imaging and 
diagnosis

Sources: ISIC 2016, Beluch et al. 2018
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What does the future hold for high-dimensional active 
learning?

Hyperspectral remote sensing images

• Methods will become even more powerful and 

accurate as computational power and 

optimization capabilities increase

• Active learning paradigm can be applied to even 

higher-dimensional features, such as natural 
language or hyperspectral images (pictured)

• Even better uncertainty estimation for acquisition 

functions

• Even more powerful models, e.g. Transformer 

architectures in vision
• Quantum approaches?

Image Source: https://eos.org/opinions/realizing-machine-learnings-promise-in-geoscience-remote-sensing



THANK YOU!

Nicolas Malz (n.malz@campus.lmu-munich.de)

Discussion suggestion: Why did the ensemble models eventually 

outperform the Bayesian approach?
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